

Delfi-C³ local oscillator design

Wouter Weggelaar PA3WEG

 T_2

AMSAT-UK Colloquium

26th of July 2008

T₁

Transceiver

What are oscillators?

- An oscillator is a system that can generate a periodic signal out of constants
- There has to be a minimum of one timing component
- Order
 - First
 - -Second
 - -Third

AMSAT-UK Colloquium

Delfi-C³

Crystals

- Thin piece of (synthetic) quartz crystal
- Piezo-electric effect
- Mechanical resonance is coupled to electrical resonance
- Overtone resonance _c
- High Q-factor

AMSAT-UK Colloquium

26th of July 2008

Local Oscillator requirements

Parameter	Value
Frequency	156.600MHz, 365.34MHz
Output level	+7dBm
Output impedance	50 Ohm
Power	50mW
Temperature range	-20 - +60 ℃
Supply voltage	3V3 or 5V

Small, lightweight and preferably SMD
Can handle vacuum, radiation, vibration and shock

AMSAT-UK Colloquium

Why a Resonator synchronized emitter coupled relaxation oscillator?

Delfi-C³

Transmitter (TX) and Receiver (RX) LO

- TX LO directly on 156.600MHz
- RX LO on 121.78MHz multiplied by 3 by the tripler circuit

AMSAT-UK Colloquium

26th of July 2008

Relaxation oscillator

- T1 and T2 form a schmitt-trigger
- C as integrator defines the time constant

AMSAT-UK Colloquium

Wouter Weggelaar PA3WEG

Delfi-C³

Relaxation oscillator

Crystal can "alter" the threshold of the schmitt-trigger

Delfi-C³

- Transitions can take place earlier
- Crystal dominates the timing

Tripler block

- Multiply frequency by 3
- Class C clipping amplifier
 - Harmonics
- Filter the correct harmonic using a helical filter
- Amplify signal (BFR92A, BFR380)

AMSAT-UK Colloquium

Capture range

- At which freerunning frequency does the crystal "lock"?
- Has transistor biasing any influence?

AMSAT-UK Colloquium

26th of July 2008

Capture range

Frequency plot

Phase noise

- Change of phase compared to the desired LO
- Can be mixed and demodulated
- Reciprocal mixing!

AMSAT-UK Colloquium

26th of July 2008

Measuring Phase Noise

AMSAT-UK Colloquium

26th of July 2008

AMSAT-UK Colloquium

26th of July 2008

Temperature measurements

- -20 to +50°C
- Measured:
 - Frequency
 - Output level
 - "Look" at the signal on a scope
 - Temperature on the crystal measured

AMSAT-UK Colloquium

26th of July 2008

Power and Frequency over Temperature

26th of July 2008

AMSAT-UK Colloquium

Power Supply vs Frequency

- How does the circuit react to different supply voltages
- Measurement by computer
- HP-VEE program

AMSAT-UK Colloquium

26th of July 2008

AMSAT-UK Colloquium

26th of July 2008

Wouter Weggelaar PA3WEG

20

results

- Minimum supply voltage known
- Adjust freerunning frequency if supply is to be lower
- Proves lock and hold range theory

AMSAT-UK Colloquium

Problems faced

- Lay-out
 - Undesired signal pickup
 - Print capacity
 - Crosstalk between TX and RX
- LO overdrives mixer
- Parasitics in the crystal

AMSAT-UK Colloquium

26th of July 2008

Wouter Weggelaar PA3WEG

22

23

Parasitics

- Undesired resonance close to the desired frequency
- Dust and dirt
- High-Q parasitics means trouble!
- Selection from a batch of crystals

26th of July 2008

AMSAT-UK Colloquium

Parasitics

- Crystals for 156MHz now produced at 7th overtone and not on 5th
- Another Factory
- 5th overtone 156MHz was beyond manufacturers capabilities (but they tried anyway)

AMSAT-UK Colloquium

Results

26th of July 2008

Results

- Flight hardware successful and operating in space
- Voltage output
- Impedance of less importance
- X More Power consumption than estimated
 - ✓ No problem on power-budged

Parameter	Value specified	Value realized
Frequency	156,600MHz, 365,34MHz	156,600MHz, 365,34MHz
Output level	+7dBm	0,7V over mixerdiodes
Output impedance	50 Ohm	Not important
Power	50mW	66mW
Temperature range	-20 - +60 ℃	-20 - +50 °C tested
Supply voltage	3V3 of 5V	3V3

AMSAT-UK Colloquium

Which results in THIS!

And soon a 5 by 9 from JO21ex!

 γ

www.delfic3.nl pa3weg@delfic3.nl

AMSAT-UK Colloquium

26th of July 2008